Präparation, thermisches Verhalten sowie Strukturuntersuchung von M-Nd₂Ti₄O₁₁*

Norbert Hübner und Reginald Gruehn

Institut für Anorganische und Analytische Chemie der Justus Liebig Universität Gießen, Heinrich-Buff-Ring 58, W-6300 Gießen (FRG)

(Eingegangen am 15. Juli 1991)

Abstract

In the system Nd₂O₃-TiO₂ crystals of M-Nd₂Ti₄O₁₁ (M, monoclinic) were obtained by chemical transport in a temperature gradient using chlorine as transport agent ($T_2 \rightarrow T_1$; $T_2 = 1000$ °C; $T_1 = 950$ °C); the blue-violet crystals were deposited in the hotter region of the tube.

M-Nd₂Ti₄O₁₁ crystallizes in the monoclinic space group C2/c (No. 15) with the following cell dimensions: a = 13.530(3) Å; b = 5.0830(9) Å; c = 12.733(2) Å; $\beta = 108.70(2)^{\circ}$ and Z = 4 (powder data). An agreement factor of R = 7.9% ($R_w = 8.0\%$) was obtained after refinement of positional and anisotropic thermal parameters.

The structure can be described as an interconnecting network of NdO_8 distorted square antiprisms, which link by turns through edge and corner sharing along the *c*-axis; with TiO_5 square pyramids and TiO_6 octahedra which link in the same direction through corner and edge sharing.

 $M-Nd_2Ti_4O_{11}$ can be converted irreversibly into the $O-Nd_2Ti_4O_{11}$ (O, orthorhombic) structure by heating in air to 1330 °C (18 h).

Zusammenfassung

Im System Nd₂O₃-TiO₂ wurden blau-violette Kristalle von M-Nd₂Ti₄O₁₁ (M, monoklin) beim chemischen Transport ($T_2 \rightarrow T_1$; $T_2 = 1000$ °C; $T_1 = 950$ °C) mit Chlor als Transportmittel im heißeren Teil der Quarzglasampulle erhalten. Nd₂Ti₄O₁₁ kristallisiert monoklin in der Raumgruppe C2/c (No. 15) mit den Gitterkonstanten: a = 13.530(3) Å; b = 5.0830(9) Å; c = 12.733(2) Å; $\beta = 108.70(2)^{\circ}$ und Z = 4 (Guinierdaten). Die Struktur wurde bis zu R = 7.9% bzw. $R_w = 8.0\%$ verfeinert.

Die Koordination der Ti-Teilchen läßt sich durch TiO_6 -Oktaeder und quadratische Pyramiden TiO_5 beschreiben, wohingegen die Nd-Atome in Form eines verzerrten quadratischen Antiprismas koordiniert sind. Beim Erhitzen an Luft (1330 °C; 18 h) wandelt sich M-Nd₂Ti₄O₁₁ irreversibel in O-Nd₂Ti₄O₁₁ um (O, orthorhombisch).

1. Einleitung

In den Systemen Ln_2O_3 -Ti O_2 (Ln = La bis Nd) sind Verbindungen bekannt, deren Zusammensetzung als $Ln_2Ti_4O_{11}$ bzw. $Ln_4Ti_9O_{24}$ beschrieben wird.

^{*}Herrn Professor W. Bronger und Herrn Professor Ch. J. Raub zum 60. Geburtstag gewidmet.

Ln ³⁺	Ln4Ti9O2	24			Ln ₂ Ti ₄ O ₁₁					
	a(Å)	b(Å)	c(Å)	V(Å ³)	Lit.	a(Å)	b(Å)	c(Å)	V(Å ³)	Lit.
La	6.54	6.71	9.79	429.6	2					
	14.142	35.50	14.578	7318.8	4					
	14.14	35.41	14.58	7148.7	5					
Ce										
Pr	14.025	35.35	14.507	7192.3	4					
Nd	13.991	35.29	14.478	7148.4	4	13.968	35.08	14.462	7086.3	4
	13.991	35.289	14.479	7148.7	3	6.57	6.70	9.64	424.3	2

Kristallographische Daten von orthorhombischen Verbindungen der Zusammensetzung ${\rm Ln}_2{\rm Ti}_4{\rm O}_{11}$

McChesney und Sauer [1] haben als erste ein Pulverdiagramm der Verbindung La₄Ti₉O₂₄ angegeben. 1978 haben Kolar et al. [2] über ein Pulverdiagramm der Verbindung Nd₂Ti₄O₁₁ berichtet und dieses (ohne Einkristalldaten) mit Hilfe einer orthorhombischen Zelle indizieren können. Mit vergleichbaren Gitterkonstanten konnten sie das Pulverdiagramm von La₄Ti₉O₂₄ [1] indizieren. Auf der Basis von Röntgendaten schlossen die Autoren für die Phase Nd₂O₃·4TiO₂ auf einen Homogenitätsbereich bis zur Zusammensetzung Nd₂O₃·4,5TiO₂.

1981 konnten Kolar et al. [3] Einkristalle von $Nd_4Ti_9O_{24}$ mit Hilfe eines BaO enthaltenden "Flux" gewinnen. Einkristallaufnahmen zeigten orthorhombische Symmetrie (Raumgruppe: *Fddd* (No. 70)) mit einer allerdings deutlich größeren Elementarzelle als bei Lit. 2. 1984 konnten German und Kovba [4] das Pulverdiffraktogramm von $Nd_2Ti_4O_{11}$ anhand einer orthorhombischen Zelle beschreiben, deren Größe der des $Nd_4Ti_9O_{24}$ entspricht (vgl. Tabelle 1). Wegen der gefundenen orthorhombischen Metrik werden die beiden (möglicherweise identischen) Verbindungen im folgenden als O- $Nd_2Ti_4O_{11}$ bzw. O- $Nd_4Ti_9O_{24}$ beschrieben. Die Kristallstruktur wurde jedoch noch nicht gelöst. Ein Zusammenfassung der bisher vorliegenden Ergebnisse zeigt Tabelle 1.

2. Präparative Arbeiten

Ein Gemenge von Nd₂O₃ und TiO₂ (1:4) diente als Ausgangsbodenkörper im Quellenraum (T_2) der ausgeheizten (800 °C; 4 h) Quarzglasampulle (l = 12cm; d = 1.8 cm). Die nach dem Einfüllen des Transportmittels Chlor ($p(Cl_2; 298 \text{ K}) = 1$ atm) zugeschmolzene Ampulle wurde im Temperaturgradienten ($T_2 \rightarrow T_1$; $T_2 = 1000$ °C; $T_1 = 950$ °C) erhitzt (16 d). Ein chemischer Transport [6] konnte nicht beobachtet werden. Im Ausgangsbodenkörper entstanden jedoch blau-violette Kristalle von M-Nd₂Ti₄O₁₁ (M, monoklin). Das Guinierdiagramm (Abb. 1) zeigt keinerlei Gemeinsamkeit mit dem von Kolar et al. [2] angegebenen Pulverdiagramm von O-Nd₂Ti₄O₁₁.

TABELLE 1

Abb. 1. Guinierdiagramme (a) für M-Nd₂Ti₄O₁₁ berechnete Intensitäten I; (b) T-Quarz zum Vergleich; (c) θ (Grad); (d) Aufnahme von M-Nd₂Ti₄O₁₁; (e) $d(\text{\AA})$.

Bei Transportexperimenten mit höheren Temperaturen 1050 °C \rightarrow 1000 °C ($T_2 \rightarrow T_1$) und sonst gleichen experimentellen Bedingungen (Nd₂O₃:TiO₂ (1:4); Cl₂ als Transportmittel) schieden sich Rutilkristalle in der Senke der Ampulle (T_1) ab. Der Ausgangsbodenkörper (T_2) bestand danach aus Nd₂Ti₂O₇: die hohe Reaktionstemperatur ermöglichte einen chemischen Transport von TiO₂ und verhinderte so die Bildung eines Ti-reicheren Bodenkörpers bei T_2 .

Nach dem Tempern (1000 °C, 7 d) von Gemengen Nd_2O_3 :Ti O_2 (1:4) mit Chlor (1 atm, 298 K) als Mineralisator in Quarzglasampullen zeigten Guinieraufnahmen lediglich das Vorliegen von $Nd_2Ti_2O_7$ [7] neben Rutil.

Bei Transportversuchen mit O-Nd₂Ti₄O₁₁ (aus Nd₂O₃:TiO₂ (1:4); Platintiegel an Luft; 1330 °C) als Ausgangsbodenkörper und Chlor ($p(Cl_2; 298 K) = 1$ atm) als Transportmittel (1080 °C \rightarrow 1040 °C; 14 d) wurden sowohl Rutil-Kristalle, als auch blauviolette Kristalle abgeschieden, deren Guinierdiagramm dem von O-Nd₄Ti₉O₂₄ entsprach. Einkristallaufnahmen (Drehkristall, Weißenberg) bestätigten die orthorhombische Metrik und Zellparameter von Kolar et al. [3] (gefunden: a = 13.94 Å; b = 14.46 Å; c = 35.23 Å), jedoch weisen die Weißenberg-Aufnahmen auf eine Verzwilligung hin.

2.1. Thermisches Verhalten

Da $M-Nd_2Ti_4O_{11}$ bisher nur durch Tempern mit Chlor als Mineralisator und bei (für Festkörperreaktionen) niedrigen Temperaturen (Darstellungstemperatur 1000 °C) erhalten wurde, interessierte, ob bei höherer Temperatur ein Übergang in die schon längere Zeit bekannte, möglicherweise unter diesen

Abb. 2. Guinierdiagramme (a) Diagramm von Nd₄Ti₉O₂₄ nach Lit. 3; (b) T-Quarz zum Vergleich; (c) θ (Grad); (d) Aufnahme von O-Nd₂Ti₄O₁₁ (durch Erhitzen der Oxide an Luft); (e) Aufnahme von O-Nd₂Ti₄O₁₁ (durch Erhitzen von M-Nd₂Ti₄O₁₁ an Luft); (f) $d(\text{\AA})$.

Bedingungen thermodynamisch stabilere Modifikation $O-Nd_2Ti_4O_{11}$ [2] zu beobachten ist.

Einige der durch chemischen Transport erhaltenen Kristalle von M-Nd₂Ti₄O₁₁ wurden auf 1330 °C (18 h; Platintiegel; an der Luft) erhitzt. Nach dem Abkühlen auf Raumtemperatur besaßen die Kristalle zwar noch ihre ursprüngliche Form, waren aber undurchsichtig (polykristallin) und sehr hart geworden. Wie die Guinieraufnahme zeigte (Abb. 2), hatten sich die Kristalle von M-Nd₂Ti₄O₁₁ in O-Nd₂Ti₄O₁₁ umgewandelt: danach ist M-Nd₂Ti₄O₁₁ bei diesen Temperaturen thermodynamisch nicht mehr stabil.

Um zu prüfen, ob eine Umwandlung O-Nd₂Ti₄O₁₁ \rightarrow M-Nd₂Ti₄O₁₁ unter isothermen Bedingungen stattfindet, wurde in eine ausgeheizte Quarzglasampulle O-Nd₂Ti₄O₁₁ eingefüllt und diese unter Chloratmosphäre ($p(Cl_2) =$ 1 atm) abgeschmolzen. Die Ampulle wurde nun unter nahezu isothermen Bedingungen erhitzt (1000 °C; 14 d). Guinieraufnahmen des erhaltenen, pulverförmigen Bodenkörpers zeigten nur das Vorhandensein von O-Nd₂Ti₄O₁₁, neben geringen Mengen von Nd₂Ti₃O₈Cl₂ [8]. Die Umwandlung von M-Nd₂Ti₄O₁₁ in O-Nd₂Ti₄O₁₁ ist demnach irreversibel.

3. Einkristalluntersuchungen

Unter einem Mikroskop wurde ein geeigneter Kristall ausgesucht. Röntgenaufnahmen nach der Drehkristall-, Weißenberg- und Präzessionsmethode (Mo K $\bar{\alpha}$) zeigten die folgenden Reflexklassen: hkl: h+k=2n; h0l: h, l=2n; 0kl: k=2n; hk0: h+k=2n; 0k0: k=2n; h00: h=2n; 00l: l=2n; daraus ergaben sich als mögliche Raumgruppen C2/c (No. 15) und Cc (No. 9).

Die Intensitäten von insgesamt 5096 Reflexen (davon 1330 symmetrieunabhängigen) wurden mit einem automatischen Vierkreisdiffraktometer (Siemens/Stoe AED-2; Mo K α_1 Strahlung; Graphitmonochromator) im Bereich $3^{\circ} \leq \theta \leq 30^{\circ}$ gemessen.

Die Strukturbestimmung in der Raumgruppe C2/c (No. 15) erfolgte aus der Patterson-Funktion (Programm SHELXS-86 [9]). Zur Verfeinerung der Schweratomlagen, sowie der Lokalisierung und Verfeinerung der Ti- und O-Lagen wurde das Programm SHELX-76 [10] verwendet. Hierbei wurde ein *R*-Wert von 7.9% und ein R_w -Wert von 8.0% erreicht. In Tabelle 2 sind einige

TABELLE 2

Formel	Nd ₂ Ti ₄ O ₁₁
Kristallsystem	Monoklin
Raumgruppe	C2/c (No. 15)
Gitterkonstanten (Å) nach	a = 13.530(3)
Guinieraufnahmen	b = 5.0830(9)
	c = 12.733(2)
	$\beta = 108.70(2)^{\circ}$
Volumen der Elementarzelle (ų)	829.5(2)
Dichte (röntg.) ($g \text{ cm}^{-3}$)	5.33
Zahl der Formeleinheiten	Z = 4
Molvolumen (röntg.) (cm ³)	124.9
Molvolumen (Biltz'sche Inkremente)	139 cm ³
Kristallform, -farbe	Nadelförmig, blau-violett
μ (Mo K α) (cm ⁻¹)	151.27
F(000)	1096.00
Diffraktometer	Vierkreis (AED-2)
Strahlung; Monochromator	Mo K α_1 ; Graphit
Korrektur der Intensitäten	Polarisations- und Lorentzfaktor
	Absorption: DIFABS [11]
Meßbereich	$3 \leqslant \theta \leqslant 30^{\circ}$
Abtastung; Abtastbreite	ω -scan; 1.1–1.8°
Abtastgeschwindigkeit	$0.5 - 1.7^{\circ} \text{ s}^{-1}$
Anzahl der symmetrieunabh. Reflexe	1330 $(R_{(int)} = 0.045)$
Anzahl der gemessenen Reflexe	5096
Strukturbestimmung und Verfeinerung	Patterson; Differenzfourier; Streufaktoren
	[12, 13]; Vollmatrix-kleinste Quadrate
Anzahl der freien Parameter	79
Nicht berücksichtigte Reflexe	_
$\sum \ F_0 - F_c $	7.9%
$R = \frac{\sum F_0 }{\sum F_0 }$	
$\sum w^{1/2} F_0 - F_c $	8.0%
$K_w = \frac{\sum w^{1/2} F_0 }{\sum w^{1/2} F_0 }$	

Kristallographische Daten^a von M-Nd₂Ti₄O₁₁ und ihre Bestimmung

^aStandardabweichungen in Klammern.

	Temperaturfaktoren ^a
	"anisotrope"
	pun
	Lageparameter
	Punktlagen,
TABELLE 3	M-Nd ₂ Ti ₄ O ₁₁ :

Atom	Punkt- lage	x	y	સ	U(1,1)	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
PN	8f	0.6969(1)	0.4957(2)	0.0940(1)	0.0078(5)	0.0113(5)	0.0094(5)	0.0001(2)	0.0024(3)	0.000(3)
Til	8f	0.9692(2)	0.5539(5)	0.5974(2)	0.0084(12)	0.0047(10)	0.0130(13)	-0.0005(9)	0.0039(9)	-0.0005(9)
Ti2	8f	0.3902(2)	0.4430(5)	0.1897(2)	$\cdot 0.0066(12)$	0.0054(10)	0.0098(12)	0.0002(9)	0.0015(9)	0.0009(9)
01	8f	0.8617(9)	0.2754(21)	0.5606(9)	0.0106(50)	0.0112(46)	0.0073(47)	0.0027(38)	0.0055(39)	-0.0024(40)
02	8f	0.8411(8)	0.7659(21)	0.5974(9)	0.0053(46)	0.0127(48)	0.0073(49)	-0.0037(37)	0.0022(38)	0.0015(38)
03	8f	0.2818(9)	0.6594(23)	0.7230(9)	0.0116(51)	0.0148(52)	0.0103(51)	0.0026(41)	0.0038(41)	0.0066(43)
04	8f	0.9313(8)	0.6471(21)	0.4440(9)	0.0069(46)	0.0117(47)	0.0087(48)	0.0020(37)	0.0022(37)	0.0005(39)
05	8f	0.4563(9)	0.3590(22)	0.8323(9)	0.0073(46)	0.0155(50)	0.0086(49)	0.0048(39)	0.0026(38)	0.0038(41)
90	4e	0	0.3396(31)	3/4	0.0073(68)	0.0143(72)	0.0101(72)	0	0.0036(56)	0
		E		-1- 1-1-						

"Der "anisotrope" Temperaturfaktor ist definiert als

 $T = \exp[-2\pi^2 \{U_{11}h^2(a^*)^2 + \dots 2U_{12}hka^*b^* + \dots\}]$

kristallographische und röntgenographische Daten zusammengefaßt, während Tabelle 3 die Lageparameter sowie die "anisotrop" verfeinerten Auslenkungsparameter wiedergibt.

4. Indizierung und Verfeinerung der Gitterkonstanten

Zur Verfeinerung der Gitterkonstanten mit Hilfe von Guinieraufnahmen (Cu K α_1 Strahlung; $\lambda = 1.54056$ Å) wurden die erhaltenen Kristalle fein in einer Achatreibschale verrieben und mit T-Quarz als innerem Standard vermengt. Die Indizierung der Reflexe (Tabelle 4) gelang anhand der auf den Einkristallaufnahmen gefundenen monoklinen Metrik und der groben Zell-

TABELLE 4

	Auswertung	einer	Guinieraufnahme*	von	M-Nd ₂ Ti ₂	₄O	11
--	------------	-------	------------------	-----	-----------------------------------	-----------	----

Nr.	h k l	$4\theta_0$ (Grad)	$\sin^2 \theta_{\rm c}(\times 10^3)$	$\sin^2 \theta_0(\times 10^3)$	$d_{\rm c}({\rm \AA})$	<i>I</i> ₀ ^b	I _c
1	200	27.533	14.45	14.36	6.4080	sw	137
2	002	29.260	16.31	16.21	6.0305	SSW	61
3	$1 \ 1 \ 0$	37.506	26.57	26.54	4.7250	SSW	77
4	11 - 2	44.951	37.96	37.98	3.9532	swm	238
5	202	46.493	40.61	40.59	3.8222	SSW	46
6	$1\ 1\ 2$	50.567	47.81	47.90	3.5226	st-sst	728
7	40 - 2	53.998	54.41	54.49	3.3021	sw	184
8	$3\ 1\ 0$	54.498	55.47	55.49	3.2704	sst	1000
9	$1 \ 1 \ -3$	54.768	55.90	56.03	3.2580	SSW	28
10	31 - 2	55.288	57.01	57.08	3.2259	m	325
11	20 - 4	56.728	60.01	60.03	3.1443	SW	189
12	004	59.217	65.26	65.29	3.0152	swm	205
13	$1 \ 1 \ -4$	66.579	81.98	82.05	2.6901	swm	265
14	40 - 4	67.268	83.66	83.70	2.6631	SW	127
15	$3\ 1\ -4$	70.341	91.18	91.28	2.5508	sw	111
16	$0\ 2\ 0$	70.631	91.85	92.01	2.5415	swm	204
17	$4\ 0\ 2$	71.369	93.80	93.88	2.5149	sw	154
18	114	74.391	101.68	101.71	2.4156	swm	236
19	51 - 2	75.628	104.96	105.00	2.3775	sw	156
20	$2\ 2\ 0$	76.146	106.30	106.39	2.3625	SSW	48
21	$5\ 1\ 0$	78.658	113.26	113.24	2.2887	SSW	77
22	$6\ 0\ -2$	79.993	116.80	116.96	2.2537	sw	175
23	51 - 4	84.296	129.28	129.29	2.1422	SSW	86
24	$2\ 2\ 2$	85.371	132.46	132.46	2.1164	SSW	86
25	42 - 2	89.950	146.26	146.29	2.0141	SW	101
26	006	90.139	146.83	146.87	2.0102	sw	117
27	314	91.233	150.27	150.27	1.9870	sw	107
28	22 - 4	91.730	151.86	151.83	1.9766	sw	186
29	024	93.342	157.11	156.91	1.9433	sw	109
30	31-6	93.650	157.98	157.88	1,9379	sw	118
31	42 - 4	99.047	175.51	175.43	1.8386	sw	173
32	71 - 2	100.895	181.80	181.61	1.8065	sw	115
33	422	102.087	185.65	185.63	1.7876	m	343

^aCu K α_1 Strahlung ($\lambda = 1.54056$ Å).

^bsst, sehr stark; st, stark; m, mittel; sw, schwach; ssw, sehr schwach.

parameter. Eine Ausgleichsrechnung nach der Methode der kleinsten Fehlerquadrate mit Hilfe der Programms SOS [14] lieferte die Gitterkonstanten: a=13.530(3) Å; b=5.0830(9) Å; c=12.733(2) Å; $\beta=108.70(2)^{\circ}$ mit Z=4.

5. Beschreibung der Struktur und Diskussion

Der Aufbau der monoklinen Elementarzelle (C2/c (No. 15)) läßt sich von einem Polyedergerüst (Abb. 3) mit zwei verschieden von Sauerstoff koordinierten Ti-Teilchen ableiten. Hierbei besitzt das Ti(1)-Teilchen eine oktaedrische Sauerstoffumgebung (Abb. 4), wohingegen Ti(2) (Abb. 5) quadratisch pyramidal von Sauerstoffatomen koordiniert ist.

Die Koordinationspolyeder wurden nach Berechnungen gemäß dem ECoN-Konzept [15] überprüft. Die dabei zugrunde gelegten interatomaren Abstände geben die Tabellen 5 und 6 wieder. Es ist hervorzuheben, daß bei dem Ti(2)-

Abb. 3. Die Struktur von M-Nd₂Ti₄O₁₁ längs [010]: Verknüpfung der Ti-O Polyeder (y-Parameter der Ti-Atome angegeben; nach vorne gerichtete Bindungen fett); •, Nd ($y \approx 1$; vgl. Abb. 7); •, Nd ($y \approx 0.5$); O, Nd ($y \approx 0$).

Abb. 4. Koordinationspolyeder um Ti(1) (schematisch; Abstände in Å).

Abb. 5. Koordinationspolyeder um Ti(2) (schematisch; Abstände in Å).

TABELLE 5

Nd-O2 2.354 Nd-O1 2.355 Nd-O3 2.393 Nd-O4 2.421 Nd-O3 2.429 Nd-O2 2.606 Nd-O5 2.645	Ti1-O4 1.898 Ti1-O5 1.912 Ti1-O4 1.917 Ti1-O1 1.978 Ti1-O2 2.044 Ti1-O6 2.153 Ti1-O5 3.430 ^a	Ti2-O3 1.735 Ti2-O2 1.877 Ti2-O1 1.921 Ti2-O5 2.021 Ti2-O6 2.035 Ti2-O5 2.408*
Nd-O5 2.645 Nd-O1 2.672 Nd-O4 3.703 ^a	Ti1-O5 3.430 ^a	

Interatomare Abstände (in Å) bei M-Nd₂Ti₄O₁₁ (Multiplizität $1 \times$)

^aAufgrund des Abstandes nicht mehr in die Koordination einbezogen.

TABELLE 6

Winkel (Grad) und Abstände (Å) der Nd-, Til- und Ti2-Koordinationspolyeder in M-Nd₂Ti₄O₁₁

Nd	02(1)	01(2)	03(3)	04(4)	03(5)	O2(6)	05(7)	01(8)
02(1)	2.354	114.35	87.48	97.30	100.76	71.11	153.32	61.19
01(2)	3.957	2.355	156.88	104.37	95.14	64.81	92.10	71.15
03(3)	3.282	4.651	2.393	78.90	72.23	133.79	66.91	117.03
04(4)	3.585	3.773	3.059	2.421	144.97	64.54	71.43	150.52
03(5)	3.685	3.531	2.842	4.625	2.429	150.19	79.16	63.54
02(6)	2.891	2.667	4.599	2.689	4.866	2.606	121.15	88.29
05(7)	4.865	3.605	2.785	2.963	3.237	4.574	2.645	136.60
01(8)	2.573	2.936	4.322	4.926	2.694	3.676	4.940	2.672
Ti1	04(1)	O5(2)	04(3)	01(4)	02(5)	O6(6)		
04(1)	1.898	104.67	80.25	94.73	164.57	91.71		
05(2)	3.016	1.912	101.89	158.64	83.78	93.87		
04(3)	2.459	2.973	1.917	89.98	85.42	163.66		
01(4)	2.852	3.822	2.754	1.978	79.50	76.44		
O2(5)	3.907	2.643	2.689	2.573	2.044	100.70		
06(6)	2.912	2.974	4.029	2.560	3.232	2.153		
Ti2	03(1)	O2(2)	01(3)	05(4)	06(5)			
03(1)	1.735	103.50	94.77	95.44	105.59			
O2(2)	2.838	1.877	89.18	97.85	149.81			
01(3)	2.694	2.667	1.921	165.90	80.58			
05(4)	2.785	2.940	3.912	2.021	87.32			
O6(5)	3.009	3.777	2.560	2.800	2.035			

Polyeder sowohl ein verhältnismässig kleiner Ti–O Abstand (1.735 Å), als auch ein besonders langer Ti–O Abstand (2.408 Å) auftritt. Der letztere wurde daher nicht in die Koordination des Ti(2) miteinbezogen. Die nach dem ECoN-Konzept berechneten effektiven Koordinationszahlen (CN) betragen für Ti(1) CN = 5.6 und Ti(2) CN = 4.5.

Abb. 6. Koordinationspolyeder um Nd (schematisch; Abstände in Å).

Das Nd–O-Polyeder (Abb. 6) läßt sich als stark verzerrtes quadratisches Antiprisma beschreiben. Die Nd–O Abstände liegen zwischen 2.354 und 2.672 Å. Der mittlere Nd–O Abstand beträgt 2.484 Å. Die nach dem ECoN-Konzept berechnete Koordinationszahl liegt bei 7.3.

In der Projektion der Struktur (längs [010]; Abb. 7) erkennt man ein zweidimensionales Netzwerk von (abwechselnd) kanten- und ecken-verknüpften NdO₈ Polyedern entlang der *c*-Achse. Das Ti–O Polyedergerüst, welches sich zwischen zwei NdO₈ Netzwerken befindet, wird von kanten- und eckenverknüpften TiO₆- bzw. TiO₅-Polyedern gebildet.

Durch die gleichzeitige Präsenz von 5- und 6-fach koordiniertem Titan in der M-Nd₂Ti₄O₁₁-Struktur bildet sie einen Übergang zwischen der Nd₂Ti₂O₇-Struktur [16, 17] (CN=6: TiO₆ Oktaeder) und der Nd₂TiO₅-Struktur [18] (CN=5: trigonale Bipyramide). Die doch recht seltene quadratisch pyramidale Koordination der Ti(2)-Polyeder findet sich auch noch in der Verbindung KNaTiO₃ [19].

Zur Überprüfung der Kristallstruktur von $Nd_2Ti_4O_{11}$ wurden die Madelung Anteil der Gitterenergie (MAPLE)-Werte herangezogen. Nach Hoppe [20–22] sollte die Differenz zwischen den MAPLE-Werten der ternären Verbindung und der Summe der MAPLE-Werte der binären Komponenten nicht mehr als 1% betragen.

Für Nd₂Ti₄O₁₁ berechnet sich ein Wert von 16 377.94 kcal mol⁻¹. Als Vergleichswert aus den binären Komponenten Nd₂O₃ (A-Typ) [23] und TiO₂ (Rutil-Modifikation) [24] erhält man (MAPLE-Werte in kcal mol⁻¹)

Abb. 7. Die Struktur von M-Nd₂ Ti_4O_{11} längs [010]: Verknüpfung der Nd–O Polyeder (y-Parameter der Nd-Atome angegeben; nach vorne gerichtete Bindungen fett).

 $1 \times MAPLE(Nd_2O_3) + 4 \times MAPLE(TiO_2) = MAPLE(Nd_2Ti_4O_{11})$

 $1 \times 3476.12 + 4 \times 3254.3 = 16493.32$

Die Differenz der MAPLE-Werte

 $\Delta = MAPLE(ternär) - \sum MAPLE(binär)$

ist mit $\Delta = 0.7\%$ in einem tolerierbaren Bereich (s. auch Lit. 25).

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie haben wir für die Unterstützung mit Sachmitteln zu danken. Herrn Dr. M. Serafin und G. Koch danken wir für die Messungen am Vierkreisdiffraktometer. Herrn U. Wilfer möchten wir für die technische Hilfe beim Betrieb der Öfen, und Herrn Dr. G. Höfer (Heraeus-Quarzglasschmelze, Hanau) für die großzügige Überlassung von Quarzglas danken. Weiterhin gilt unser Dank Frau H. Geiss für ihre Hilfe bei den graphischen Arbeiten und Herrn M. Zahrt für die Arbeiten im Fotolabor.

Literatur

- 1 J. B. McChesney und H. A. Sauer, J. Am. Ceram. Soc., 45(9) (1962) 416-422.
- 2 D. Kolar, S. Gaberscek, A. Barbulescu und B. Volavsek, J. Less-Common Met., 60 (1978) 137-141.
- 3 D. Kolar, S. Gaberscek, B. Volavsek, H. S. Parker und R. S. Roth, J. Solid State Chem., 38 (1981) 158-164.
- 4 M. German und L. M. Kovba, Vestn. Mosk. Univ., Ser. 2, 25(3) (1984) 276-278.
- 5 J. P. Guha und D. Kolar, J. Mater. Sci. Lett., 1 (1982) 312-313.
- 6 H. Schäfer, Chemische Transportreaktionen, Verlag Chemie, Weinheim, 1962.
- 7 F. Queyroux, M. Huber und R. Collungues, C. R. Acad. Sci., 270 (1970) 806-808.
- 8 N. Hübner und R. Gruehn, Z. anorg. allg. Chemie, 597 (1991) 93-102.
- 9 G. M. Sheldrick, SHELXS-86 Program for Crystal Structure Solution, Göttingen, Germany, 1986.
- 10 G. M. Sheldrick, SHELX-76 Program for Crystal Structure Determination, Cambridge, UK, 1976.
- 11 N. Walker und D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158-166.
- 12 D. T. Cromer und J. B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321-324.
- 13 D. T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891-1898.
- 14 G. Meyer und J. Soose, Programme zur Auswertung von Guinier-Simon-Aufnahmen, Staatsexamensarbeit, Gießen, 1980.
- 15 R. Hoppe, Z. Kristallogr., 150 (1979) 23-52.
- 16 M. Gasperin, Acta Crystallogr., Sect. B, 31 (1975) 2129-2130.
- 17 K. Scheunemann und Hk. Müller-Buschbaum, J. Inorg. Nucl. Chem., 37 (1975) 2261-2263.
- 18 K. Scheunemann und Hk. Müller-Buschbaum, J. Inorg. Nucl. Chem., 35 (1973) 1091-1098.
- 19 R. Werthmann und R. Hoppe, Z. anorg. allg. Chemie, 523 (1985) 54-62.
- 20 R. Hoppe, Angew. Chem., 78 (1966) 52-63; Angew. Chem., Int. Ed. Engl., 5 (1966) 95.
- 21 R. Hoppe, Angew. Chem., 82 (1970) 7-16; Angew. Chem., Int. Ed. Engl., 9 (1970) 25.
- 22 R. Hoppe, Izvjesca, Jugoslav. Centr. Kristallogr. (Zagreb), 8 (1973) 21-35.
- 23 P. Aldebert und J. P. Traverse, Mater. Res. Bull., 14 (1979) 303-323.
- 24 T. M. Sabine und C. J. Howard, Acta Crystallogr., Sect. B, 38 (1982) 701-702.
- 25 N. Hübner, Dissertation, Gießen, in Vorbereitung.